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摘要

近年來，隨著消費者級別的全景相機越來越普及，深度學習運用在全景相機

上的相關演算法在計算機視覺領域開始得到許多重視。此外，因為全景像機能夠

同時拍到周圍 360度資訊的關係，室內自主系統也開始在使用全景像機進行室內

定位與導航，然而，全景影像的場景理解技術至今都沒有成熟的演算法能夠讓大

家有效率的去運用，因此，本論文將針對室內自主系統中至關重要的兩個項目 (1)

室內環境深度預測，與 (2)室內格局預測來進行討論並提出新穎高效率的演算法

來提高未來室內自主系統相關應用的可行性。首先，針對深度預測的部分，我們

透過結合不同投影資訊的方式來提高既有方法在預測的深度圖上容易產生模糊

的問題，同時，我們提出了兩個全新的網路架構 BiFuse和 BiFuse++來大幅改善

全景影像深度預測的精確度；針對格局預測的部分，我們則結合了 BiFuse++與

LED2-Net來同時運用不同投影的資訊與一維表示法並精確預測出室內格局的資

訊。

關鍵字：全景影像、深度學習、深度預測、格局預測
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Abstract

In recent years, as consumer-level 360◦ cameras become popular and affordable by

most people, algorithms that utilize deep learning and panoramas become important topics

in computer vision. Moreover, since 360◦ cameras are caplable of capturing all surround-

ing information around the camera, indoor autonomous systems start to adopt these useful

sensors for indoor localization and navigation tasks. However, efficient approaches for

dealing with these tasks haven’t been studied well in computer vision field. Hence, in

this paper, we focus on the two important tasks in indoor autonomous systems: 1) Indoor

Depth Estimation, and 2) Indoor Layout Estimation. For Indoor Depth Estimation, we

utilize the information from different projections of panoramas and propose two novel

framework, BiFuse and BiFuse++, to significantly improve the problems existing in pre-

viouse works that the predicted depth maps from networks are usually blurred. For Indoor

Layout Estimation, we utilize BiFuse++ and LED2-Net to simultaneously use the infor-

mation from different projections and 1D representation to precisely estimate layouts from

panoramas.

Keywords: 360, deep-learning, depth-estimation, layout-estimation
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Chapter 1 BiFuse: Monocular 360◦

Depth Estimation via

Bi-Projection Fusion

1.1 Introduction

Inferring 3D structure from 2D images has been widely studied due to numerous

practical applications. For instance, it is crucial for autonomous systems like self-driving

cars and indoor robots to sense the 3D environment since they need to navigate safely in

3D. Among several techniques for 3D reconstruction, significant improvement has been

achieved in monocular depth estimation due to the advance of deep learning and avail-

ability of large-scale 3D training data. For example, FCRN [4] achieves monocular depth

estimation by their proposed up-projection module. However, most of the existing meth-

ods are designed for a camera with normal field-of-view (FoV). As 360◦ camera becomes

more and more popular in recent years, the ability to infer the 3D structure of a camera’s

complete surrounding has motivated the study of monocular 360◦ depth estimation.

In this paper, we propose an end-to-end trainable neural network leveraging two com-

mon projections – equirectangular and cubemap projection – as inputs to predict the depth

1



Figure 1.1: Our BiFuse network estimates the 360◦ depth from a monocular image us-
ing both equirectangular and cubemap projections. A bi-projection fusion component is
proposed to leverage both projections inspired by both peripheral and foveal vision of the
human eye. Given the estimated 360◦ depth, a complete 3D point cloud surrounding the
camera can be generated to serve downstream applications.

map of a monocular 360◦ image. Our main motivation is to combine the capability from

both peripheral and foveal vision like the human eye (see Fig. 1.1 for the illustration).

Note that, equirectangular projection provides a wide field-of-view mimicking a periph-

eral vision, whereas cubemap projection provides a smaller but non-distorted field-of-view

mimicking the foveal vision. On the one hand, equirectangular projection allows all sur-

rounding information to be observed from a single 2D image but introduces distortion.

On the other hand, cubemap projection avoids distortion but introduces discontinuity at

the boundary of the cube. Considering both projections would have the complementary

property to each other, where we refer to our method as BiFuse.

However, the FoV of the foveal vision could be too small, which degrades the effec-

tiveness of our fusion scheme (Fig. 1.2). To tackle this issue, cube padding (CP) meth-

ods [5,6] have been proposed to expand field-of-view from neighboring faces on the cube.

Nevertheless, using cube padding may result in geometric inconsistency at the boundary

2



that introduces non-negligible distortion effect. Therefore, we propose spherical padding

(SP) which pads the boundary by considering the spherical geometry and reduces the

boundary inconsistency. Finally, instead of naively combining features of both branches

(e.g., [7]), we propose a bi-projection fusion procedure with learnable masks to balance

the information shared between two projections. The source code and pretrained models

are available to the public1.

We apply our method to four panorama datasets: Matterport3D [8], PanoSUNCG [5],

360D [9] and Stanford2D3D [10]. Our experimental results show that the proposedmethod

performs favorably against the current state-of-the-art (SOTA) methods. In addition, we

present extensive ablation study for each of the proposed modules, including the spherical

padding and fusion schemes. Our contributions are summarized as follows:

1. We propose an end-to-end two-branch network, which incorporates both equirect-

angular and cubemap projections, tomimic the combination of peripheral and foveal

vision of the human eye, respectively.

2. To share the information of different projections, we propose a bi-projection fusion

procedure with learnable masks to balance the information from two projections.

3. We propose spherical padding to extend the field-of-view of cubemap projection

and reduce the boundary inconsistency of each face.

1https://fuenwang.ml/project/bifuse
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1.2 Related Work

We describe the related work regarding monocular depth estimation and 360◦ per-

ception in the following.

Monocular Depth Estimation. Saxena et al. [11] is one of the pioneer work on learning

to estimate monocular depth. After several years of development using classical machine

learning approaches, deep learning contributes to the latest significant improvement in

performance. Eigen et al. [12] first use a deep neural network to estimate the depth map

from a single image. Later on, Laina et al. [4] utilize ResNet [13] as the encoder and

propose an up-projection module for the upsampling procedure along with the reverse

Huber loss to improve depth estimation. In addition, Lee et al. [14] try to predict depth

using several cropped images and combine them in the Fourier domain. To further refine

depth predictions, [15–19] integrate conditional random fields (CRF) into deep neural

network to achieve better performance. For instance, Cao et al. [15] formulate depth

estimation as a classification problem and use CRF to refine the final prediction.

Moreover, other attempts have been made to advance depth estimation. Fu et al. [20]

use dilated convolution to increase the receptive field and apply the ordinal regression loss

to preserve the spatial relation between each neighboring class. With photometric loss, un-

supervised training for depth estimation [21–27] can be achieved. Godard et al. [21] use

stereo pairs to predict disparity based on the left-right consistency, while Zhou et al. [22]

propose two networks to estimate both depth and ego-motion from video sequences. In ad-

dition, Yang et al. [25] use depth-normal consistency to improve depth prediction. How-

ever, for the above-mentioned methods, they are designed for a camera with normal FoV
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Figure 1.2: Field-of-view (FoV) comparison. Equirectangular projection has the largest
FoV compared to each face on the cubemap projection with (solid-line) or without (dash-
line) the proposed spherical padding.

without considering the property of 360◦ images.

360◦ Perception. Recently, omnidirectional cameras has become a popularmedia, which

encourages people to work on panorama related tasks [28, 29]. For instance, due to the

large field-of-view, room layout can be inferred from panorama [7, 29, 30]. However, the

performance usually suffers from the distortion of equirectangular projection. To over-

come this issue, several approaches are proposed. Cheng et al. [6] convert panorama into

cubemap. For each face, they replace the original zero padding with their proposed cube

padding method to remove the boundary inconsistency. Built upon [6], Wang et al. [5]

use cubemap and cube padding for unsupervised panorama depth estimation.

To make the network aware of the distortion, spherical convolution methods are pro-

posed recently [31–34]. Considering this property, Zioulis et al. [9] propose OmniDepth

and adopt spherical layers in [34] as the pre-processing module. However, it still re-

mains a challenge when applying spherical CNNs using deeper networks on the depth
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task. Ederet et al. [35] tackle the 360◦ depth estimation as multi-task learning of depth,

surface normal, and plane boundary. However, the surface normal from depth map is usu-

ally noisy especially in real-world scenarios which limits the scalability outside synthetic

scenes. Different from existing works above, we improve the learning mechanism via uti-

lizing a two-branch network from the perspective of the human eye system and propose

a spherical padding scheme to maintain the geometric consistency in the cubemap repre-

sentation. Our experiments shows that our method achieves state-of-the-art performance

in both real-world and synthetic scenes.

1.3 Our Approach

In this paper, we aim to take advantage of two different representations for 360◦ im-

ages, equirectangular and cubemap projections, for improving the monocular 360◦ depth

estimation. In the following, we sequentially detail the cubemap projection with our pro-

posed spherical padding procedure in Sec. 1.3.1 and 1.3.2, bi-projection fusion scheme in

Sec. 1.3.3, and the overall network architecture in Sec. 1.3.3.

1.3.1 Preliminary

For a cubemap representation with sides of equal length w, we denote its six faces as

fi, i ∈ {B,D, F, L,R, U}, corresponding to the ones on the back, down, front, left, right

and up, respectively. Each face can be treated as the image plane of an independent camera

with focal length w
2 , in which all these cameras share the same center of projection (i.e., the

center of the cube) but with different poses. Whenwe set the origin of the world coordinate

system to the center of the cube, the extrinsic matrix of each camera coordinate system can
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be simply defined by a rotation matrix Rfi and zero translation. Given a pixel pi on the

image plane fi with its coordinate (x, y, z) on the corresponding camera system, where

0 ≤ x, y ≤ w − 1 and z = w
2 , we can transform it into the equirectangular representation

by a simple mapping:

qi = Rfi · pi ,

θfi = arctan(
qxi
qzi
) ,

φfi = arcsin
qyi
|qi|

,

(1.1)

where θfi and φfi are longitude and latitude in equirectangular projection; and qxi , q
y
i , qzi

are the x, y, z components of qi respectively. As this mapping is reversible, we are able to

easily perform both equirectangular-to-cube and cube-to-equirectangular transformations,

which are denoted as E2C and C2E, respectively.

In Figure 1.5 we provide the detailed illustration of the equirectangular-to-cube and

cube-to-equirectangular transformations (E2C andC2E). To be specific, when doing E2C,

we need to sample pixels on equirectangular coordinate in order to acquire the correspond-

ing texture for each face of the cube representation. However, if we directly project from

equirectangular coordinates onto the cube, we could have some faces with incomplete pix-

els as these pixels cannot be mapped from the integer equirectangular coordinates. As a

result, the technique of inversemapping is usually adopted to solve this problem: for each

coordinate on the cube, we compute its corresponding coordinate in the equirectangular

system and copy the pixel value. Please note here that, if the corresponding coordinate

in the equirectangular system is with floating numbers, the interpolation is applied on its

neighboring integer coordinates to retrieve the interpolated pixel value.
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Cube Face

Cube Padding Spherical Padding

Figure 1.3: Spherical padding v.s. cube padding. Cube padding directly pads the feature
of the connected faces. In addition to obvious inconsistency at the boundary, the values of
four corners are undefined. In [6], the values are only chosen by the closest side. In our
proposed spherical padding, the padding area is calculated with spherical projection. As
a result, both the missing corner and inconsistency at the boundary can be addressed.

1.3.2 Proposed Spherical Padding

Due to the distortion in the equirectangular projection, directly learning a typical

convolutional neural network to perform monocular depth estimation on equirectangular

images would lead to unstable training process and unsatisfying prediction [6]. In contrast,

the cubemap representation suffers less from distortion but instead produces large errors

since the discontinuity across the boundaries of each face [5, 6]. In order to resolve this

issue for cubemap projection, Cheng et al. [6] propose the cube padding (CP) approach

to utilize the connectivity between faces on the cube for image padding. However, solely

padding the feature map of a face by using the features from its neighboring faces does
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Figure 1.4: The proposed BiFuse Network. Our network consists of two branches Be

and Bc. The input of Be is an RGB equirectangular image, while Bc takes the corre-
sponding cubemap as input. We replace the first convolution layer in Be with a Pre-
Block [9,34]. For the decoder, we adopt up-projection [4] modules. For each convolution
and up-projection layer in Bc, we apply our spherical padding to connect feature maps of
six faces. Most importantly, between feature maps from Be and Bc, we use the proposed
bi-projection fusion module to share information between two feature representations. Fi-
nally, we add a Conv module [36] to unify two depth predictions from Be and Bc.

Figure 1.5: Illustration for the transformation presented in Equation (1) of our main
manuscript. As shown on the right-hand side, given a 3-dimensional coordinate (x, y, z)
on the face of cubemap, it can be transformed into the corresponding coordinate (θ,φ) in
terms of equirectangular representation.

not follow the characteristic of perspective projection. Therefore, here we propose the

spherical padding (SP) method, which pads the feature according to spherical projection.

As such, we can connect each face with the geometric relationship. A comparison between

the cube padding [6] and our proposed spherical padding is illustrated in Fig. 1.3.

Themost straightforward way to apply spherical padding for cubemap is to first trans-

form all the faces into a unified equirectangular image by C2E. Then, we extend the orig-

inal FoV σ = 90◦ to σ′, and map it back to the cubemap by E2C. As a result, we can

pad them on each face completely without missing parts (i.e., undefined areas in cube
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Figure 1.6: The cubemap with length w and padding size γ. We keep the focal length the
same (0.5w) and calculate a new FoV σ′.

padding of Fig. 1.3) and with consistent geometry. Specifically, given a cubemap with

side length w and Fov σ = 90◦, the C2E transformation is identical to the inverse calcula-

tion of (1.1). When we apply spherical padding with padding size γ, which is determined

by the padding size in the convolution layer (e.g.,γ=1 for a 3×3convolution layer), we

update the side length of a cube face to w′ = w + 2γ, and the corresponding FoV be-

comes σ′ = 2 arctan w/2+γ
w/2 after padding, as illustrated in Fig. 1.6. Hence, for mapping

from equirectangular image back to the padded cubemap, we should use both w′ and σ′ to

derive the correct E2C transformation for spherical padding.

Efficient Transformation. Wehave described the overall concept of our spherical padding.

However, the above procedure consists of both C2E and E2C transformations, which could

require heavy computational cost. Therefore, we simplify this procedure by deriving a di-

rect mapping function between two cube faces. Given two cube faces fi and fj , we first

denote the geometric transformation between their camera coordinate systems as a rota-

tion matrix Rfi→fj . Then the mapping from a pixel pi in fi to fj can be established upon
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the typical projection model of pinhole cameras:

K =





w/2 0 w/2

0 w/2 w/2

0 0 1




,

pj = K ·Rfi→fj · pi ,

x =
pxj
pzj

, y =
pyj
pzj

,

(1.2)

where (x, y) represents the 2D location of pi after being mapped onto the image plane of

fj . Since this mapping only needs to be computed once for all the pixels on the padding

region, the computational cost of applying spherical padding is comparable with cube

padding, without any E2C or C2E transformation included.

1.3.3 Proposed BiFuse Network

We have introduced our spherical padding method that enlarges the field-of-view

while maintaining the geometric consistency at the boundary, to improve the cubemap

representation as one branch of the proposed BiFuse network. In Fig. 1.4, we show our

complete two-branch network motivated by the human eye system with peripheral and

foveal vision.

Overall, ourmodel consists of two encoder-decoder branches which take the equirect-

angular image and cubemap as input, respectively, where we denote the equirectangular

branch as Be and the cubemap one as Bc. As mentioned in Sec. 1.1, each branch has its

benefit but also suffers from some limitations. To jointly learn a better model while shar-

ing both advantages, we utilize a bi-projection fusion block that bridges the information
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across two branches, which will be described in the following. To generate the final pre-

diction, we first convert the prediction of cubemap to the equirectangular view and adopt

a convolution module to combine both predictions.

Bi-Projection Fusion. To encourage the information shared across two branches, we

empirically find that directly combining feature maps [7] from Be and Bc would result in

unstable gradients and training procedure, and thus it is keen to develop a fusion scheme

to balance two branches. Inspired by the recent works in multi-tasking [37,38], we focus

on balancing the feature map from two different representations. To achieve this goal, we

propose a bi-projection fusion module H: given feature maps he and hc from Be and Bc

in each layer respectively, we estimate the corresponding feature maps h′
e = He(he) and

h′
c = Hc(C2E(hc)), where He and Hc indicate a convolution layer.

To produce feature maps that benefit both branches, we first concatenate h′
e and h′

c,

and then pass it to a convolution layer with the sigmoid activation to estimate a maskM

to balance the fusion procedure. Finally, we generate feature maps h̄e and h̄c as the input

to the next layer as:

h̄e = he +M · h′
c ,

h̄c = hc + E2C((1−M)) · E2C(h′
e) . (1.3)

Note that we use C2E and E2C operations in the fusion procedure to ensure that features

and the maskM are in the same projection space.

The overview of our fusion block is provided in Figure 1.7. First, the inputs are

the feature maps from equirectangular and cubemap branches, which are fed into their
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Figure 1.7: Illustration of our fusion block. The symbol × denotes element-wise multi-
plication while the symbol + denotes element-wise summation.

corresponding convolution layers respectively. After concatenating their outputs after

convolutions (denoted as h′
e = He(he) and h′

c = Hc(C2E(hc)) respectively), another

convolution layer is used to infer a weighting mask M in order to balance the fusion be-

tween two branches. Finally, we obtain the final outputs by having h̄e = he +M · h′
c and

h̄c = hc + E2C((1−M)) · E2C(h′
e). In this way, the information between two branches

can be well shared.

Loss Function. We adopt the reverse Huber loss [4] as the objective function for opti-

mizing predictions from both Be and Bc:

B(x) =






|x| |x| ≤ c ,

x2+c2

2c |x| > c .

(1.4)

The overall objective function is then written as:

L =
∑

i∈P

B(Di
e −Di

GT ) + B(C2E(Dc)
i −Di

GT ) , (1.5)

where De and Dc are the predictions produced by Be and Bc respectively; DGT is the

ground truth depth in the equirectangular representation; and P indicates all pixels where
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there is a valid depth value in the ground truth map. We note that the C2E operation is

required on converting Dc into the equirectangular form before computing the loss.

Network Architecture. For each branch, we adopt the ResNet-50 [13] architecture as

the encoder and use the up-projection module proposed by [4] as the decoder. Similar

to [9] that considers the equirectangular property, we replace the first convolution layer

of ResNet-50 in Be with a spherical Pre-Block that has multi-scale kernels with size of

(3,9), (5,11), (5,7), and (7,7), where their output feature maps are concatenated together

as a 64-channel feature map and further fed into the next layer. In the cubemap branchBc,

we replace the original zero padding operation with our spherical padding among every

adjacent layer (Fig. 1.4).

Furthermore, the proposed bi-projection fusion block as in (1.3) is inserted between

every two layers between Be and Bc in both encoder and decoder, in which each He and

Hc in one fusion module contains a convolution layer which has the same channel number

as the input feature map. Finally, to combine the predictions from Be and Bc, we adopt a

module with several convolution layers as in [36].

1.3.4 Implementation Details

We implement the network using the PyTorch [39] framework. We use Adam [40]

optimizer with β1 = 0.9 and β2 = 0.999. Our batch size is 16 and the learning rate is set to

0.0003. For training our model, we first learn Be and Bc branches independently without

using the fusion scheme as the warm-up training stage for 40 epochs, and then update only

bi-projection fusion modules for another 40 epochs. Finally, we train the entire network

for 20 epochs.
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Table 1.1: Quantitative results on real-world datasets: Matterport3D and Stanford2D3D.

Dataset Method MRE ↓ MAE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

Matterport3D

FCRN [4] 0.2409 0.4008 0.6704 0.1244 0.7703 0.9174 0.9617
OmniDepth (bn) [9] 0.2901 0.4838 0.7643 0.1450 0.6830 0.8794 0.9429

Equi 0.2074 0.3701 0.6536 0.1176 0.8302 0.9245 0.9577
Cube 0.2505 0.3929 0.6628 0.1281 0.7556 0.9135 0.9612

Ours w/ fusion 0.2048 0.3470 0.6259 0.1134 0.8452 0.9319 0.9632

Stanford2D3D

FCRN [4] 0.1837 0.3428 0.5774 0.1100 0.7230 0.9207 0.9731
OmniDepth (bn) [9] 0.1996 0.3743 0.6152 0.1212 0.6877 0.8891 0.9578

Equi 0.1428 0.2711 0.4637 0.0911 0.8261 0.9458 0.9800
Cube 0.1332 0.2588 0.4407 0.0844 0.8347 0.9523 0.9838

Ours w/ fusion 0.1209 0.2343 0.4142 0.0787 0.8660 0.9580 0.9860

1.4 Experimental Results

In this section, we conduct experiments on four panorama benchmark datasets: Mat-

terport3D [8], PanoSUNCG [5], 360D [9] and Stanford2D3D [10], both quantitatively

and qualitatively. We mainly compare our method with the baseline FCRN [4] and the

OmniDepth [9] approach, which is the current state-of-the-art for single panorama depth

estimation. In addition, we compare different variants of the proposed framework to val-

idate the effectiveness of our designed modules. Source code and models will be made

available to the public.

1.4.1 Evaluation Metric and Datasets

We evaluate the performance by standard metrics in depth estimation, including MAE,

MRE, RMSE, RMSE (log), and δ. Details of each dataset are introduced below and we

use the same setting to compare all the methods.

Matterport3D. Matterport3D contains 10,800 panorama and the corresponding depth

ground truth captured by Matterport’s Pro 3D Camera. This dataset is the largest real-
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Table 1.2: Quantitative results on virtual-world datasets: PanoSUNCG and 360D.

Dataset Method MRE ↓ MAE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

PanoSUNCG

FCRN [4] 0.0979 0.1346 0.3973 0.0692 0.9223 0.9659 0.9819
OmniDepth [9] 0.1143 0.1624 0.3710 0.0882 0.8705 0.9365 0.9650

Equi 0.0687 0.0836 0.2902 0.0496 0.9529 0.9787 0.9886
Cube 0.0628 0.0891 0.2946 0.0508 0.9453 0.9780 0.9890

Ours w/ fusion 0.0592 0.0789 0.2596 0.0443 0.9590 0.9823 0.9907

360D

FCRN [4] 0.0699 0.1381 0.2833 0.0473 0.9532 0.9905 0.9966
OmniDepth [9] 0.0931 0.1706 0.3171 0.0725 0.9092 0.9702 0.9851

Equi 0.0606 0.1172 0.2667 0.0437 0.9667 0.9920 0.9966
Cube 0.0613 0.1167 0.2739 0.0447 0.9688 0.9908 0.9956

Ours w/ fusion 0.0615 0.1143 0.2440 0.0428 0.9699 0.9927 0.9969

world dataset for indoor panorama scenes, which makes it challenging as the depth map

from ToF sensors usually has noise or missing value in certain areas. In practice, we filter

areas with missing values during training. To train and test our network, we follow the

official split which takes 61 rooms for training and the others are for testing. We resize

the resolution of image and depth map into 512 × 1024.

Stanford2D3D. Stanford2D3D is collected from three kinds of buildings in the real

world, containing six large-scale indoor areas. The dataset contains 1413 panoramas and

we use one of official splits that takes fifth area (area_5) for testing, and the others are

for training. During training and testing, we resize the resolution of image and depth map

into 512 × 1024.

PanoSUNCG. PanoSUNCGcontains 103 scenes of SUNCG [41] and has 25,000 panora-

mas. In experiments, we use the official training and testing splits, where 80 scenes are

for training and 23 for testing. For all panoramas, we resize them to 256 × 512 and filter

out pixels with depth values larger than 10 meters.
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Figure 1.8: Qualitative results of Matterport3D. The black area in the ground truth depth
map indicates invalid pixels.

Figure 1.9: Qualitative results of Stanford2D3D. The black area in the ground truth depth
map indicates invalid pixels.

360D. 360D dataset is collected by OmniDepth [9], including two synthetic datasets,

SunCG and SceneNet and two realistic datasets, Stanford2D3D and Matterport3D. They

use path tracing renderer to render four datasets and place spherical cameras in the virtual

environment to acquire photo-realistic panoramas with the resolutions 256 × 512. For

each panorama, they apply augmentation by 90◦, 180◦ and 270◦. In total, 360D contains

35,977 panoramas, where 34,679 of them are used for training and the rests are for testing.

1.4.2 Overall Performance

We first present results of using two baselines, eachwith a single branch, and compare

them with our proposed two-branch framework: 1) Equi: the equirectangular branch Be

without bi-projection fusion; 2) Cube: the cubemap branch Bc with cube padding [6]

without our fusion scheme; 3) Ours w/ fusion: our final model of applying the proposed

spherical padding to the cubemap branch Bc and integrating our bi-projection fusion to
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Table 1.3: Comparison of padding methods on the cubemap branch.

Dataset Method MRE MAE RMSE

Matterport3D
Cube w/ zp 0.2577 0.4136 0.6934
Cube w/ cp 0.2505 0.3929 0.6628
Cube w/ sp 0.2254 0.3660 0.6327

Stanford2D3D
Cube w/ zp 0.1457 0.2667 0.4511
Cube w/ cp 0.1332 0.2588 0.4407
Cube w/ sp 0.1259 0.2388 0.4269

PanoSUNCG
Cube w/ zp 0.1195 0.1367 0.3441
Cube w/ cp 0.0628 0.0891 0.2946
Cube w/ sp 0.0600 0.0840 0.2874

360D
Cube w/ zp 0.0761 0.1382 0.2819
Cube w/ cp 0.0610 0.1163 0.2722
Cube w/ sp 0.0588 0.1145 0.2614

both branches.

In Table 1.1 and 1.2, we show quantitative comparisons on four datasets as men-

tioned above. Overall, our fusion model performs favorably against FCRN [4] and Om-

niDepth [9], as well as our baselines using the single branch (i.e., Equi or Cube). This

validates the effectiveness of the proposed two-branch network, in which the equirectan-

gular view provides a larger field-of-view and the cubemap one focuses on non-distorted

regions.

Moreover, onMatterport3D and Stanford2D3D, we find that the official implementa-

tion of OmniDepth (originally designed for the 360D [9] dataset) has difficulty to converge

on these two datasets, and thus we add batch normalization [42] to successfully train the

model, which is denoted as OmniDepth (bn) in Table 1.1.

Qualitative Comparisons. From Fig. 1.8 to 1.11, we present qualitative results of depth

maps on four datasets. Compared to the FCRN andOmniDepthmethods, our model is able

to produce sharper results around boundaries. This can be attributed by the foveal view
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Figure 1.10: Qualitative results of PanoSUNCG. The black area in the ground truth depth
map indicates invalid pixels.

Figure 1.11: Qualitative results of 360D. The black area in the ground truth depth map
indicates invalid pixels.

capturing detailed information, while the peripheral view with larger FoV provides global

context.

1.4.3 More Results and Ablation Study

Effect of Spherical Padding. To further study the effects of spherical padding in the

cubemap, we compare the proposed spherical padding (SP) with the other two padding

methods, i.e., zero padding (ZP) and cube padding (CP).

Quantitative results on only the cubemap branch are shown in Table 1.3. By apply-

ing our spherical padding, the cubemap branch Bc outperforms other padding methods

significantly. In addition, Fig. 1.12 shows qualitative comparisons of applying different
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Table 1.4: Qualitative results of fusion methods on Matterport3D.

Method MRE MAE RMSE

Yang et al. [7] 0.2662 0.4842 0.7364
Average 0.2658 0.4405 0.7202
Ours 0.2048 0.3470 0.6259

ZP

CP

SP

Figure 1.12: Qualitative result of different padding methods. For clear visualization, we
plot the inverse depth to compare different padding methods.

padding methods. When using zero padding, the depth maps of six faces have obvious

boundary artifacts. After using cube padding, the boundary effect becomes more smooth,

but it is still observable because the cube padding does not follow the geometric relation-

ship. By applying the proposed spherical padding, we are able to maintain the boundary

as spherical padding is calculated using the spherical projection.

Fusion Schemes. To validate our fusion module, we conduct two baselines on Matter-

port3D using the fusion method proposed in [7] via directly adding up two feature maps

and the feature averaging scheme. We show this ablation study in Table 1.4. From the
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results, our method is consistently better than the baselines. For instance, the MAE is im-

proved by 28% and 23% comparing with Yang et al. [7] and Average. In addition, we find

the training of this baseline is unstable and has the convergence problem as the gradients

from different branches cannot be well balanced. This shows the benefit of integrating

our bi-projection fusion scheme which applies several masks to balance features of two

branches.

More results and analysis. To demonstrate that our fusion scheme is beneficial to the

depth estimation, we build up two model variants with different fusion strategies as the

baselines to make comparison: 1) a fusion method proposed in [7] via directly adding up

two feature maps, and 2) simply averaging predictions from two branches. In addition

to the training/evaluation in the equirectangular coordinate (Table 1.4), we further pro-

vide comparisons in the perspective coordinate. Table 1.5 shows the quantitative results

evaluated on the Matterport3D dataset, and our full model with the bi-directional fusion

module is able to outperform other baselines with other fusion strategies, which validates

the benefit of our fusion scheme to improve depth estimation in 360◦ cameras.

Table 1.5: Quantitative results on the Matterport3D dataset with comparisons to different
fusion strategies. Training and evaluation is based on the cubemap coordinate system.

Different fusion MRE ↓ MAE ↓ RMSE ↓ RMSE (log) ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Yang et al. [7] 0.4652 0.2616 0.5490 0.1541 0.8661 0.9453 0.9665
Average 0.4798 0.2642 0.5488 0.1550 0.8630 0.9460 0.9672
Ours 0.4512 0.2473 0.5343 0.1518 0.8792 0.9485 0.9676

Qualitative Result of Point Clouds For better visualization on the comparison between

our proposed method and the baselines, here we show several qualitative results on four

datasets (two cases each) in terms of point clouds, which are based on the depth estimation

produced by different approaches: Matterport3D in Fig. 1.13 and Fig. 1.14; PanoSUNCG
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Figure 1.13: Matterport3D dataset

Figure 1.14: Matterport3D dataset

in Fig. 1.15 and Fig. 1.16; Stanford2D3D in Fig. 1.17 and Fig. 1.18; 360D in Fig. 1.19

and Fig. 1.20, respectively. Each figure has two rows, the first row shows depth predic-

tions, while the second row provides corresponding point clouds in bird eye view. The

point cloud results clearly demonstrate that our prediction has sharper boundary than other

methods (i.e., FCRN and Omni) and are closer to the ground truth (GT).

1.5 Conclusions

In this paper, we propose an end-to-end 360◦ depth estimation network which in-

corporates both equirectangular and cubemap projections to mimic peripheral and foveal

vision as the human eye. Since the two projections have the complementary property,
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Figure 1.15: PanoSUNCG dataset

Figure 1.16: PanoSUNCG dataset

we fuse their features by our bi-projection fusion module. Furthermore, to extend the

field-of-view of the cubemap projection and eliminate the boundary inconsistency of each

cube face, we propose spherical padding which connects features from neighboring faces.

Experimental results demonstrate that our method achieves state-of-the-art performance.
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Figure 1.17: Stanford2D3D dataset

Figure 1.18: Stanford2D3D dataset

Figure 1.19: 360D dataset
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Figure 1.20: 360D dataset
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Chapter 2 BiFuse++: Self-supervised

and Efficient Bi-projection

Fusion for 360◦ Depth

Estimation

2.1 Introduction

Depth estimation from a single image is a crucial technique for many applications.

For indoor autonomous systems, the geometric information of depth maps is necessary

to improve navigation and exploration efficiency. Moreover, a thoughtful understanding

of the environment provided by depth maps is also required to ensure the safety of the

surrounding people. Traditionally, depth maps are captured by scanners such as LiDARs,

structured light, or other time-of-flight (ToF) sensors. Such sensors are typically costly

and, thus, have limited usages depending on the scenarios. With the advance of deep neu-

ral networks, depth estimation from the perspective cameras becomes a possible solution

for these tasks. For instance, FCRN [4] is one popular framework for monocular depth

estimation. However, most existing frameworks are designed only for perspective cam-

eras with limited field-of-view (FoV), whereas some depth sensors (e.g., LiDARs) offer
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Figure 2.1: Our BiFuse++ is a self-supervised framework ofmonocular 360◦ depth estima-
tion. The depth estimation network (DepthNet) is a bi-projection architecture consisting
of two encoders and a shared decoder. The inputs of DepthNet are equirectangular and
cubemap projections of reference panorama It. Between each adjacent layer of encoders,
the feature maps of two projections are fused by our proposed fusion module (green ar-
rows). To achieve self-supervised learning, an additional network (PoseNet) takes three
adjacent panoramas (It−1, It, and It+1) in a video sequence as inputs and infers the corre-
sponding camera motions (Pt−1 and Pt+1). We then compute the photo consistency error
based on the predicted depth map and camera motions to jointly train the two networks.

360◦ field-of-view.

With the rising availability of consumer-level spherical cameras, the omnidirectional

camera turns into a good choice for indoor autonomous systems. By capturing the 360◦

information into a single panorama, 360◦ cameras can significantly increase the naviga-

tion and exploration efficiency. Coming along with this, 360◦ perception has become

an important topic in computer vision. For instance, OmniDepth [9] and BiFuse [1] are

frameworks for monocular 360◦ depth estimation. These frameworks use the ground truth

depth maps captured by depth sensors as the supervisory signals to train the network. In

general, there are two major issues for such 360◦ depth estimation frameworks: 1) Unlike

common perspective cameras, the distortion introduced by equirectangular projection is

extremely large, especially near the north and south poles on equirectangular coordinates.

2) the large number of depth maps captured by sensors is necessary to train the networks

and thus highly increases the cost of data collection. Since the distortion can be removed

by converting a single equirectangular image into several perspective ones where each of
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them only covers limited FoVs (e.g., cubemap projection), BiFuse [1] utilizes the combi-

nation of equirectangular and cubemap projection as input to the framework. In this way,

the 360◦ context can be preserved with the equirectangular projection, while the areas with

large distortions can be resolved by the cubemap one. However, it is still necessary for

the training of BiFuse to adopt a large-scale dataset consisting of precise depth ground

truths from depth sensors, and the cost of data collection is usually large since the depth

sensors with 360◦ FoV are expensive and not affordable by most consumers. Therefore,

the requirement for a large amount of ground truth depth maps still prevents BiFuse from

being extended to various scenes, thus reducing its scalability.

To reduce the cost of data collection, self-supervised learning approaches of monoc-

ular depth estimation like SfMLearner [22] are designed for normal FoV cameras. By uti-

lizing SfMLearner and the cubemap projection, 360-SelfNet [5] is the first framework for

self-supervised 360◦ depth estimation. However, only using cubemap and cubepadding [6]

cannot provide complete information and also harms the stability of depth consistency

around the cubemap boundary as addressed in [1]. To this end, combining both the equirect-

angular and cubemap projections appear to be a potential solution for self-supervised 360◦

depth estimation, in which such a combination has not been studied in this field.

In this paper, we extend the previous BiFuse [1] work and propose an advanced

framework “BiFuse++” for self-supervised monocular 360◦ depth estimation. As illus-

trated in Figure 2.1, there are two networks, DepthNet and PoseNet, in our framework.

DepthNet first estimates the depthmap of the reference panorama It and PoseNet estimates

the corresponding camera motions between adjacent panoramas (It−1 and It+1). We then

compute their photo consistency error to achieve self-supervised training. Our DepthNet

is a bi-projection architecture which takes equirectangular and cubemap projections as in-
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puts (It) to estimate the corresponding depth map. Motivated by UniFuse [43], we adopt

a single decoder to unify feature maps from equirectangular and cubemap branches. To

improve the performance and efficiency, we propose a new fusion module to exchange the

information between different projections. Unlike UniFuse that simply infers equirectan-

gular and cubemap feature maps from two independent encoders, our fusion module first

fuses feature maps from two projections, and then the fused ones are further passed into

the next layers of encoders. In this way, our encoders can directly retrieve the information

from another branch and preserve more complete details on the predicted depth maps.

To infer the camera motions between adjacent panoramas, 360-SelfNet [5] adopts an

additional network that takes the concatenation of adjacent panoramas as input and uses

an encoder to extract the camera motions. In addition, a decoder consisting of transposed

convolutional layers is adopted to infer the occlusion masks that are further leveraged in

photometric loss. Instead of following 360-SelfNet to adopt an encoder-decoder architec-

ture, our PoseNet is a single encoder that takes three adjacent panoramas (It−1, It, and

It+1) as input, and infers the backward and forward camera motions (Pt−1 and Pt+1), i.e.,

the camera motions from It to It−1 and from It to It+1. We then directly adopt additional

convolutional layers in the encoder to extract occlusion masks at different scales. With

the predicted depth map and camera motions, we can achieve self-supervised training

based on the photo consistency assumption. However, we find that the spherical photo-

metric loss proposed by 360-SelfNet has a degeneration problem in low-texture areas and

severely harms the training performance in real-world videos (see Figure 2.2). To this

end, we propose “Contrast-Aware Photometric Loss (CAPL)” to deal with the degener-

ation. In addition to achieving self-supervised training on 360◦ videos, our BiFuse++ is

also efficient and effective to be adopted in supervised training.
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Figure 2.2: 360-SelfNet [5] trained on real-world images. The spherical photometric loss
cannot deal with the low-texture area and thus produces unstable depth maps (red indicates
a large depth value). Note that we mask out the photographer at the bottom left and right
region.

To validate the applicability of BiFuse++, we conduct extensive experiments un-

der both supervised and self-supervised scenarios. For the self-supervised scenario, we

perform experiments on the PanoSUNCG [5] dataset. For the supervised scenario, we

evaluate our method on Matterport3D [8], Stanford2D3D [10], and PanoSUNCG [5]. In

general, our BiFuse++ achieves state-of-the-art performance under self-supervised sce-

narios and is comparable with HoHoNet [44] for supervised training. To investigate the

benefit of incorporating cubemap projection, we add rotation noise into both training and

testing datasets. BiFuse++ is shown to be robust for panoramic distortion. Furthermore,

we estimate the computational cost of different fusion architectures, and our BiFuse++

achieves the lowest inference memory usage among the fusion approaches. In general,

BiFuse++ reduces about 80% of parameters compared to BiFuse, while achieving a sig-
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nificantly better performance of depth estimation. Hence, our proposedmethod is efficient

and effective for 360◦ depth estimation.

To summarize, our contributions are the following:

1. BiFuse++ is the first work that integrates the bi-projection fusion architecture into

self-supervised monocular 360◦ depth estimation.

2. We propose a new fusion module to improve the efficiency while preserving com-

plete details in the depth maps.

3. Our framework achieves state-of-the-art performance under self-supervised training

scenario and comparable with recent approaches under supervised training.

2.2 Related Works

Supervised Monocular Depth Estimation. Saxena et al. [11] is the pioneering work

lifting a 2D image into a 3D model. With the advance in deep learning, approaches based

on convolutional neural networks are studied. Eigen et al. [12] first propose using a deep

neural network to estimate the depth map from a single image. Laina et al. [4] adopt

ResNet [13] as the encoder and propose an up-projection module to upsample the feature

maps. In addition, reverse Huber loss is proposed to balance the difference between small

and large error areas of the estimated depth maps. To further improve the estimated depth

maps, several approaches utilizing conditional random field (CRF) are proposed [15–19].

Cao et al. [15] treat depth estimation as a classification task and apply CRF to refine it. By

leveraging ordinal regression into the deep neural network, Fu et al. [20] propose a deep

ordinal regression network (DORN) that formulates depth estimation as a classification
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task. Ranftl et al. [45] propose to combine data from different sources and mix several

datasets to greatly improve monocular depth estimation. Bhat et al. [46] propose to predict

the depth maps as a linear combination of bins.

However, accurate depth maps measured by laser scanners like LiDARs or Kinect

are required for the methods above, which significantly increases the cost of collecting a

large amount of training data, and thus self-supervised approaches are studied.

Self-SupervisedMonocular Depth Estimation. Xie et al. [47] collect the training data

from 3D movies, i.e., the left and right frames, and propose Deep3D that infers the left or

right frame of the input image to convert a 2D image into a 3D one. Garg et al. [48] propose

a stereopsis-based framework that takes a single image of a rectified stereo pairs as input

and infers the corresponding depth maps by image reconstruction error. Godard et al. [21]

use the stereo image pairs and left-right photometric consistency to achieve self-training

of monocular depth estimation. Since stereo cameras are still less popular than monocu-

lar ones for consumer-level devices, self-training approaches using sequential videos are

studied. Zhou et al. [22] propose using two sub-networks to estimate both the monocular

depth map and the camera pose of the sequential pairs in the training stage. In this way, a

depth estimation network can be directly trained with a large number of monocular videos

without any annotation or calibration, which highly improves the scalability of depth es-

timation. Vijayanarasimhan et al. [49] propose forward-backward constraints and lever-

age [50] to deal with the rigid motions of dynamic objects in the scene. Yang et al. [25]

use depth-normal consistency to improve the depth estimation. Godard et al. [51] propose

an automatic masking technique to efficiently mask out the moving objects. Johnston et
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al. [52] use self-attention and discrete disparity to improve depth estimation. Guizilini et

al. [53] propose PackNet to improve the generalization ability of the depth estimation

network on the out-of-domain data. Bian et al. [54] propose a self-discovered masking

scheme to detect moving objects in the videos.

To encode the structural information into the network, object-level information is

used to improve the performance of self-supervised depth estimation. Guizilini et al. [55]

utilize an additional segmentation network to guide the depth estimation network. Chen et

al. [56] propose SceneNet to jointly constrain semantic and geometric understanding with

content consistency. Zhu et al. [57] propose explicit border consistency between segmen-

tation and depth map. Klingner et al. [58] propose SGDepth to solve moving objects by

semantic guidance. Hoyer et al. [59] transfer the feature maps of a self-supervised depth

estimation network to improve semantic segmentation.

360◦ Perception. Recently, since omnidirectional cameras, e.g., fisheye and 360◦ cam-

eras, are widely used, people have started to focus on topics of panoramas. To extend

the existing deep neural network techniques to panoramas, the distortion introduced by

the equirectangular projection increases the instability of performance. Cheng et al. [6]

first use cubemap projection to solve the distortion and propose cubepadding to extend

the receptive field of each face. Wang et al. [60] incorporate circular padding and rota-

tion invariance into the deep neural network. In addition to avoiding the distortion with

projections, several distortion-aware convolutional approaches are proposed. Esteves et

al. [32] and Cohen et al. [31] propose spherical CNNs by using Fourier transformation to

implement the spherical correlation. Su et al. [33, 34] use different convolutional kernels
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according to the longitude and latitude on the equirectangular projection, and also adapt a

pretrained model of perspective camera for inference procedure.

360◦ Depth Estimation. Based on the cube padding strategy (Cheng et al. [6]), Wang et

al. [5] propose 360-SelfNet that is the first framework of self-supervised 360◦ depth esti-

mation. Zioulis et al. [9] incorporate SphConv (Su et al. [34]) into the encoder to overcome

the panoramic distortion and propose a framework for 360◦ depth estimation. Zioulis et

al. [61] use CoordConv (Liu et al. [62]) and trinocular view synthesis to improve the per-

formance. Inspired by Yang et al. [7] adopting a combination of different projections,

Wang et al. [1] propose BiFuse that is a two-branch architecture and utilizes cubemap

and equirectangular projections. Since the cube padding does not follow the projection

geometry, “spherical padding” based on the spherical projection is introduced. Moreover,

to better leverage the information of two projections, i.e., equirectangular and cubemap,

“bi-projection fusion” is applied to fuse the feature maps. To improve efficiency, Jiang et

al. [43] propose UniFuse to simplify the framework of BiFuse. To improve depth predic-

tion, Jin et al. [63] and Zeng et al. [64] utilize layout information to provide more context

to neural networks. By leveraging 1-D representation proposed in HorizonNet (Sun et

al. [65]), Sun et al. [44] and Pintore et al. [66] propose HoHoNet and SliceNet to train a

360◦ depth estimation network.

However, only a few of the abovementioned works try to discuss monocular 360◦

depth estimation under the self-supervised training scenario. The appropriate and effi-

cient design of networks under such a scenario has not been studied well in the literature.

In this paper, we propose “BiFuse++”, a self-supervised 360◦ depth estimation framework,
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Figure 2.3: The overview of our DepthNet. Our DepthNet consists of two encoders (Be

andBc) based on ResNet-34 and a single shared decoder that unifies the feature maps from
the two encoders. The inputs are the equirectangular and cubemap projections converted
from a single panorama, and the output is the corresponding equirectangular depth map.
During the encoding procedure, the feature maps of Be and Bc are fused by our proposed
fusion module (green). Unlike [1] and [43], our fusion module refines the original feature
maps and the refined ones are then passed into next layers of Be and Bc. To preserve
complete details in the final predicted depth maps, we add three skip-connections by con-
catenating the fused feature maps (f 1

fuse, f 2
fuse, f 3

fuse) from fusion modules with decoded
feature maps. Then, we extract multi-scale depth maps (d1, d2, d3, and d4) from these
concatenated feature maps by 1x1 convolutional layers.

to improve the depth estimation efficiency and accuracy. Our framework can be adopted

in both supervised and self-supervised training scenarios, and we conduct extensive ex-

periments to verify BiFuse++ under the two scenarios. We will detail our approach in the

following sections.

2.3 Approach

Our BiFuse++ is the first framework that utilizes bi-projection architecture in self-

supervised training for monocular 360◦ depth estimation. In addition, we propose several

components to improve the performance and efficiency of BiFuse [1] and 360-SelfNet [5]:

1. We propose an advanced bi-projection architecture that significantly reduces the

model size while improving depth estimation performance compared with BiFuse.
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Figure 2.4: The architecture of our fusion module. The feature maps from equirectangular
and cubemap branches are first concatenated and passed into three convolutional blocks.
Then, we add a skip connection to the original feature maps and obtain the fused feature
maps f ′

equi and f ′
cube, which are the inputs of the next convolutional layers. In addition,

the other fused feature map ffuse are concatenated in the decoding process later.

2. We propose a new fusion module that is able to effectively share the information

between different projections while taking the lowest number of parameters.

3. To improve the training stability of 360-SelfNet on real-world videos (see Fig-

ure 2.2), we propose Contrast-Aware Photometric Loss to balance photo consistency

error difference between high-texture and low-texture areas.

We first explain the spherical projection and introduce basic transformations in Sec. 2.3.1.

In section 2.3.2, we first detail the proposed fusion module of BiFuse++. Then, we intro-

duce the design of our entire framework, including network architectures and the adapta-

tion to supervised and self-supervised training scenarios. Lastly, we explain the proposed

Contrast-Aware Photometric Loss and other loss functions we adopted in BiFuse++.

2.3.1 Spherical Projection

For a cubemap representation of which side length is equal to w, we denote i as the

six faces i ∈ {B,D, F, L,R, U}, to represent the faces of back, down, front, left, right,
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and up, respectively. Since the field-of-view (FoV) of each face is equal to 90◦; each face

can be considered as a perspective camera whose focal length is w
2 and all faces share the

same center point in world coordinate. Since the viewing direction of each face is fixed

in cubemap projection, the corresponding extrinsic matrix of each camera can be defined

by a rotation matrix Ri. For a pixel p on a certain face i, we can transform it into the

coordinate on the equirectangular projection by the following mapping:

K =





w/2 0 w/2

0 w/2 w/2

0 0 1




,

q = Ri ·K−1 · p̂ ,

θ = arctan(
qx

qz
) ,

φ = arcsin(
qy

|q|) .

(2.1)

wherew is the dimension of i and p̂ is the homogeneous representation of p; and θ and φ are

longitude and latitude in equirectangular projection; and qx, qy, qz are x-y-z components of

q, respectively. We call such mapping as cube-to-equirectangular (C2E) transformation.

Since C2Emapping is reversible, we call the reverse one as equirectangular-to-cube (E2C)

transformation. We detail E2C transformation in the following:

qx = sin(θ) · cos(φ) ,

qy = sin(φ) ,

qz = cos(θ) · cos(φ) ,

p̂ = K ·RT
i · q .

(2.2)
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Both E2C and C2E transformation are extensively used in the architecture of BiFuse.

For the convenient purpose, we use π(q) = (θ,φ) and π−1(θ,φ) = q to represent the

forward and inverse spherical projection. To convert an equirectangular depth map to

the corresponding point cloud, and project them onto another equirectangular image, we

define the following mapping function:

q̂ = R · d · π−1(θ,φ) + t ,

(θ̂, φ̂) = π(
q̂

|q̂|) .
(2.3)

where d is the depth value, R and t are the camera pose (rotation and translation) of tar-

get equirectangular image, and (θ̂, φ̂) are the projected longitude and latitude on target

equirectangular image, respectively.

2.3.2 Our BiFuse++ Framework

The overview of our BiFuse++ is illustrated in Figure 2.1. To achieve self-supervised

learning for monocular 360◦ depth estimation, our training process takes three adjacent

panoramas extracted from video sequences, and we adopt two networks, i.e., DepthNet

and PoseNet, to estimate the depth map and camera motions. In our DepthNet, we use

our proposed fusion module to exchange the information of different projections. With

the predicted depth map and camera motions, we propose “Contrast-Aware Photometric

Loss” to self-supervise the two networks. The details of each component are explained in

the following.

Fusion Module. The overview of our fusion module is illustrated in Figure 2.4. Our

fusion module consists of three convolutional layers and their inputs are the concatenation
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of fequi and fcube that are the feature maps of different projections, i.e., equirectangular and

cubemap. The red and blue layers are adopted as the residual block to refine the feature

maps of different projections, while the last convolution layer (yellow) learns a fused

feature map of both projections. Thus, there are three output feature maps, f ′
equi, f ′

cube,

and ffuse, from our fusion module. Specifically, we generate the three feature maps as:

f ′
equi = fequi +He(fequi ⊕ C2E(fcube)) ,

f ′
cube = E2C(C2E(fcube) +Hc(fequi ⊕ C2E(fcube))) ,

ffuse = Hf (fequi ⊕ C2E(fcube)) ,

(2.4)

where He, Hc, and Hf are convolutional layers, and ⊕ is the concatenation operation.

ffuse is then leveraged in our decoder. f ′
equi and f ′

cube are then passed into the next con-

volutional layer of the encoder in our network. In this way, the image details can be well

preserved in our final predicted depth maps.

Depth Estimation Network (DepthNet). The overview of our DepthNet is illustrated

in Figure 2.3. We take the equirectangular and cubemap projections converted from a

single panoramic image as inputs, and our DepthNet predicts the corresponding depth

map in equirectangular projection. DepthNet consists of two encoders based on ResNet-

34 [13] to extract the feature maps from equirectangular and cubemap panoramas. We

apply our fusion module to fuse the feature maps between each ResNet layer of the two

encoders. Different from [43], we have the refined feature maps from our fusion module

(f ′
equi and f ′

cube in Figure 2.4) forwarded into the next layers of our encoders. In this way,

the benefits of different projections can be early received in our encoders, and we find

that such a mechanism can well preserve the details of panoramas. Similar to [43], we
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adopt a single UNet-like decoder to simplify the decoder of BiFuse. We add three skip-

connections by concatenating the fused feature maps from our fusion modules (ffuse in

Figure 2.4 and f 1,2,3
fuse in Figure 2.3) with our decoder layers. In addition, we adopt sub-

pixel convolution [67] as our decoder layers to improve both final accuracy and reduce

memory consumption compared to [43] and [1]. After each decoder layer, we extract the

corresponding depth maps of four scales {ds}4s=1 by 1x1 convolutional layers, and we

follow [22] to add a sigmoid layer after them, with α and β to control the range of the

depth value.

d′s = α · ρ(fs) + β ,

ds =
1

d′s
.

(2.5)

where s denotes the scale, fs is the output of the four convolutional layers, α and β are

hyper-parameters, ρ is the sigmoid function, and ds is the depth map of scale s. In this

paper, we follow [22] and set α = 10 and β = 0.01.

Pose Estimation Network (PoseNet). To achieve self-supervised depth estimation on

videos, both depth and camera motion are required to estimate photo consistency errors.

Hence, we adopt an addition network (PoseNet) to estimate the corresponding camera

motions between adjacent frames. As illustrated in Figure 2.5, we adopt a single ResNet-

18 [13] encoder of which inputs are the concatenation of three sequential panoramas (It−1,

It, and It+1). We estimate the backward and forward camera motions Pt−1 and Pt+1 to

jointly calculate their photo consistency errors. Since photo consistency has ambiguity in

occluded areas; we have four additional 3x3 convolutional layers that take the four feature

maps from ResNet-18 as inputs and estimate the occlusion masks at four scales, which are

denoted as {Xs}4s=1. We then use the occlusion masks to suppress ambiguous areas and
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Figure 2.5: The overview of our PoseNet. Our PoseNet is based on ResNet-18 and the
inputs are three sequential panoramas (It−1, It, It+1) in a video and PoseNet infers the cor-
responding camera motion Pt−1 and Pt+1. To suppress the ambiguity of photo consistency
error in occluded areas and stabilize the training, PoseNet estimates four occlusion masks
Xs to find the occluded areas.

stabilize the training.

Self-supervised Loss Function. We use the photo consistency assumption, i.e., the im-

age intensity is consistent across reprojected frames given the depth and camera motion, to

train our DepthNet and PoseNet in a self-supervised fashion. Regarding the loss function,

360-SelfNet [5] first proposes “Spherical Photometric Loss (SPL)” to calculate the photo

consistency error with spherical projection. However, 360-SelfNet cannot estimate stable

depth maps on low-texture areas in real-world videos (Figure 2.2). We find that there is

a degeneration problem in SPL, i.e., the lower SPL is not always equal to more accurate

depth maps, and we show supporting evidence in Section 2.4. The degeneration comes

from the ambiguity of photo consistency assumption that the consistency errors of pix-

els in low-texture areas are meaningless; such ambiguity can seriously harm the training

results in real-world videos. To this end, we propose “Contrast-Aware Photometric Loss
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(CAPL)” to prevent networks from being affected by these low-texture areas:

Ls
CAPL(It,s) =

N∑

p=1

Xs(p) · σ(It,s(p)) · δ(It,s(p)) ,

δ(It,s(p)) = |It,s(p)− Ît−1,s(p)|+ |It,s(p)− Ît+1,s(p)| ,

(2.6)

where p denotes pixels, N is the total number of pixels, Xs is the predicted occlusion

mask, and σ is the standard deviation of p in a 5x5 window. δ is the photo consistency

error of It,s; Ît−1,s and Ît+1,s are the warped panoramas of It,s after being reprojected

onto It−1,s and It+1,s by the predicted depth map ds and camera motions (Pt−1 and Pt+1),

respectively. δ is first multiplied by the occlusion mask to remove unreasonable depth

values, and then we use the standard deviation of p to solve the degeneration problem

since the standard deviation in low-texture areas are usually small. In this way, CAPL can

significantly improve the quality of predicted depth maps in real-world videos.

In addition to CAPL, we adopt two regularization terms to provide constraints for

occlusion masks and predicted depth maps. To prevent predicted occlusion masks from

decaying to zero, we apply a binary cross-entropy loss to the masks:

Lm(Xs) = −
N∑

p=1

log(Xs(p)) , (2.7)

This regularization provides a large penalty when the values in occlusion masks are small.

To reduce the noise on the predicted depth maps, we apply smooth regularization to the

predicted depth map:

Lsm(ds) =
N∑

p=1

|∇(ds(p))| . (2.8)

Supervised and Self-Supervised Training. In this paper, our proposed framework is

evaluated under both supervised and self-supervised training scenarios. In supervised
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training, our DepthNet is directly trained with ground truth depth maps, and we adopt

reverse Huber loss [4] as our loss function LberHu:

LberHu =
4∑

s=1

N∑

p=1

B(ds(p), d̂s(p)) , (2.9)

B(ds(p), d̂s(p)) =






|ds(p)− d̂s(p)| |ds(p)− d̂s(p)| ≤ c ,

(ds(p)−d̂s(p))2+c2

2c |ds(p)− d̂s(p)| > c ,

(2.10)

where p is pixels, while ds and d̂s are the predicted and ground truth depth maps, respec-

tively. c is typically set to 0.2 ·max(|ds(p)− d̂s(p)|).

In self-supervised training, DepthNet and PoseNet are trained with three abovemen-

tioned loss terms: 1) Contrast-Aware Photometric Loss, 2) occlusion mask regularization,

and 3) smooth regularization. The final loss function is then established as:

Lss =
4∑

s=1

Ls
CAPL(It,s) + w1 · Lm(Xs) + w2 · Lsm(ds) , (2.11)

where w1 and w2 are hyper-parameters.

2.4 Experimental Results

Table 2.1: The quantitative results on Matterport3D [8].

Method MAE ↓ MRE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑
FCRN 0.4008 0.2409 0.6704 0.1244 0.7703 0.9174 0.9617

OmniDepth 0.4838 0.2901 0.7643 0.1450 0.6830 0.8794 0.9429
BiFuse 0.3470 0.2048 0.6259 0.1134 0.8452 0.9319 0.9632
UniFuse 0.3160 0.1592 0.5485 0.0926 0.8490 0.9463 0.9747
SliceNet 0.3296 0.1764 0.6133 0.1045 0.8716 0.9483 0.9716
HoHoNet 0.2862 0.1488 0.5138 0.0871 0.8786 0.9519 0.9771
BiFuse++ 0.2842 0.1424 0.5190 0.0862 0.8790 0.9517 0.9772

We first introduce the common evaluationmetrics, the benchmark datasets (Sec. 2.4.1),
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Table 2.2: The quantitative results on Stanford2D3D [10]. Note that SliceNet∗ is a re-
implemented version.

Method MAE ↓ MRE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑
FCRN 0.3428 0.1837 0.5774 0.1100 0.7230 0.9207 0.9731

OmniDepth 0.3743 0.1996 0.6152 0.1212 0.6877 0.8891 0.9578
BiFuse 0.2343 0.1209 0.4142 0.0787 0.8660 0.9580 0.9860
UniFuse 0.2198 0.1195 0.3875 0.0747 0.8686 0.9621 0.9870
SliceNet∗ 0.2484 0.1249 0.4370 0.0873 0.8377 0.9414 0.9777
HoHoNet 0.2027 0.1014 0.3834 0.0668 0.9054 0.9693 0.9886
BiFuse++ 0.2173 0.1117 0.3720 0.0727 0.8783 0.9649 0.9884

Table 2.3: The quantitative results on PanoSUNCG [5].

Method MAE ↓ MRE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑
FCRN 0.1346 0.0979 0.3973 0.0692 0.9223 0.9659 0.9819

OmniDepth 0.1624 0.1143 0.3710 0.0882 0.8705 0.9365 0.9650
BiFuse 0.0789 0.0592 0.2596 0.0443 0.9590 0.9823 0.9907
UniFuse 0.0776 0.0528 0.2704 0.0441 0.9591 0.9825 0.9906
BiFuse++ 0.0688 0.0524 0.2477 0.0414 0.9630 0.9835 0.9911

and implementation details (Sec. 2.4.2). For performance evaluation, we validate the

improved accuracy of BiFuse++ network architecture with supervised training scenarios

(Sec. 2.4.3) on three datasets: Matterport3D [8], Stanford2D3D [10], and PanoSUNCG [5].

We further test the robustness of our method by evaluating the performance under rotation

noise. Moreover, we validate the computational efficiency of BiFuse++ with respect to

existing approaches (Sec. 2.4.4). Then, we use the BiFuse++ network with low inference

memory to conduct self-training efficiently on PanoSUNCG [5] (Sec. 2.4.5). Moreover,

we also capture several videos in the real-world environment and conduct qualitative com-

parisons to show the applicability of BiFuse++.

2.4.1 Evaluation Metrics and Datasets

We use standard evaluation protocols in depth estimation, i.e., MAE (mean absolute

error), MRE (mean relative error), RMSE (root mean square error), RMSE (log) (scale-
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invariant rootmean square error), and δ (threshold). For RMSE (log), we use log-10 for the

computation. During evaluations, we follow [1] to ignore the area in which ground truth

depth values are larger than 10meters. Since the scale of self-training results is ambiguous,

we follow [22] and apply median alignment before evaluation for self-supervised scheme:

d′ = d · median(d̂)

median(d)
. (2.12)

where d is the predicted depth map, d̂ is the ground truth one, and d′ is the median-aligned

depth map used for evaluation.

The following datasets are used in our experiments.

Matterport3D. Matterport3D contains 10,800 panoramas and the corresponding depth

ground truth captured by Matterport＇s Pro 3D Camera, a structured-light scanner. This

dataset is the largest real-world dataset for indoor panorama scenes. However, the depth

maps from sensors usually have noise or missing value in certain areas. In practice, we

filter areas with missing values during training. We follow the official split to train and

test our network, which takes 61 rooms for training and the others for testing. We resize

the resolution of images and depth maps into 512 × 1024.

Stanford2D3D. Stanford2D3D is collected from three kinds of buildings in the real

world, containing six large-scale indoor areas. The dataset contains 1413 panoramas, and

we use one of the official splits that takes the fifth area (area 5) for testing, and the others
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are for training. During training and testing, we resize the resolution of images and depth

maps into 512 × 1024.

PanoSUNCG. PanoSUNCG contains 103 scenes of SunCG [41] and has 25,000 panora-

mas. In our experiments, we use the official training and testing splits, where 80 scenes

are for training and 23 for testing. For the supervised scheme, we resize them to 256 ×

512 and filter out pixels with depth values larger than 10 meters. For the self-supervised

one, we keep the original resolution 512 × 1024.

2.4.2 Implementation Details

We implement our network using PyTorch [39]. We use Adam [40] optimizer with

β1 = 0.9 and β2 = 0.999. Our batch size is 8, and the learning rate is 0.0003. Un-

like BiFuse [1], training the network and fusion module separately, we train the entire

framework jointly. The ResNet encoders of DepthNet and PoseNet are first pretrained

on ImageNet [68], and we apply uniform initialization to all other layers. We train the

networks for 100 epochs for supervised scenarios, while the networks are trained for 60

epochs for self-supervised scenarios. Following [5], we set w1 and w2 of Equation (2.11)

to 0.1 and 0.01, respectively.

Supervised and Self-supervised Training. In the supervised training scenario, we di-

rectly use the monocular images and corresponding depth maps provided by the above-

mentioned datasets to train our DepthNet. In other words, the training is similar to monoc-
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EQUI BiFuse UniFuse BiFuse++ GT

Figure 2.6: The qualitative results on Matterport3D, Stanford2D3D, and PanoSUNCG
under the supervised scenario (every two rows show qualitative results of each dataset).
Note that the dark blue and red colors indicate close and far distance, and we use red circles
to highlight the inconsistent predictions of all approaches.

ular depth estimation like BiFuse [1]. Since we can directly acquire supervision from

ground truth depth maps for training DepthNet with Equation (2.9), our PoseNet is not

involved in this scenario. For the self-supervised scenario, since we cannot access ground

truth depth maps for training, we use the RGB video sequences from PanoSUNCG [5] to

self-supervise both DepthNet and PoseNet. Specifically, PoseNet takes three sequential

panoramas (It−1, It, It+1 in Figure 2.5) as input and infers the camera motions between

them, while DepthNet takes only It as input and predicts the corresponding depth map.

With the predicted monocular depth map and camera motions, we can self-supervise the

two networks with Equation (2.11).

2.4.3 Results of Supervised Scenario

For supervised scenarios, we compare BiFuse++ with works of monocular depth

estimation, including approaches designed for both perspective and spherical cameras.
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Figure 2.7: The distortion introduced by equirectangular projection. When the pitch of
the camera is 0◦, the structure of the room is clear. As the pitch becomes larger, the effect
of equirectangular distortion is more obvious. The distortion affects the training stability
when applying existing approaches designed for perspective cameras to panoramas.

1) FCRN [4], a strong approach designed for perspective cameras. 2) OmniDepth [9],

a framework designed for spherical cameras that incorporates [34] into the architecture.

For 1-D representation approaches, we compare our method with SliceNet [66] and Ho-

HoNet [44].

The quantitative results are shown in Table 2.1-2.3. BiFuse++ achieves compara-

ble results with the latest state-of-the-art 1D-representation HoHoNet and outperforms all

other methods under the assumption that all input images are well aligned with the gravity

direction.

Rotation Noise Evaluation. Since the spherical cameras adopted by the abovemen-

tioned datasets are well aligned with the gravity direction, the rotation of panoramas is

usually small. This assumption benefits the most for 1-D representation like HoHoNet.

To investigate the result without this assumption, we conduct the following experiment.

For training and testing, we introduce rotation noise (see 0◦ and 30◦ rotation in Figure 2.7)

on the Matterport3D and Stanford2D3D datasets. Specifically, we uniformly sample an

angle between 30◦ and−30◦ to rotate panoramas and ground truth depth maps during each

training iteration. For testing sets, we also apply the rotation noise, but the rotated angles
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BiFuse UniFuse BiFuse++ GT

Figure 2.8: The 3D reconstruction comparison of BiFuse++ with other baselines. We
note that the red circles indicate the incorrect depth prediction. Our BiFuse++ is able to
preserve the corner details, while the other approaches predict inconsistent results.

of each image are consistent across all baselines. BiFuse++ is robust to rotation noise

compared to other methods, as shown in Table 2.4-2.5.

Table 2.4: The quantitative results after applying rotation noise on Matterport3D [8].

Method MAE MRE RMSE RMSE (log)

UniFuse 0.3197 0.1627 0.5456 0.0941
SliceNet 0.3669 0.1863 0.6124 0.1058
HoHoNet 0.3085 0.1486 0.5385 0.0897
BiFuse++ 0.3054 0.1521 0.5293 0.0897

Table 2.5: The quantitative results after applying rotation noise on Stanford2D3D [10].

Method MAE MRE RMSE RMSE (log)

UniFuse 0.2542 0.1289 0.4209 0.0819
SliceNet 0.2892 0.1459 0.5038 0.1001
HoHoNet 0.2210 0.1116 0.4001 0.0744
BiFuse++ 0.2193 0.1134 0.3890 0.0742

Qualitative Discussion. The qualitative comparison of fusion approaches are shown in

Figure 2.6. Compared with BiFuse [1], BiFuse++ achieves sharper results. This is be-

cause BiFuse adopts a simple architecture without any skip-connection layer inherited

from FCRN [4] so that the image details encoded in the low-level feature maps cannot

be well preserved. In contrast, Bifuse++ adopts a UNet-like architecture with three skip-

connection layers (c.f., Figure 2.3), and the details are well recovered in the depth maps.
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Compared with UniFuse [43], BiFuse++ recovered much clearer object boundaries. This

is because UniFuse adopts two ResNet to encode features maps of equirectangular and

cubemap projections independently so that the two encoders cannot effectively leverage

the information from the other branch. In contrast, we pass the fused features (f ′
equi and

f ′
cube in Figure 2.4) to the layers of the two encoders. In this way, the layers of encoders

can directly retrieve the context from the other projection and preserve more details on the

predicted depth maps eventually.

3D Comparison. To further show the difference in depth maps generated from fusion

approaches, we show the corresponding point cloud visualizations in Figure 2.8. The point

clouds of BiFuse and UniFuse are not capable of generating sharp corners, while BiFuse+

+ predicts accurate wall boundaries. Moreover, the depth of objects like carpets is nois-

ier than the one of BiFuse++. For high variance areas like the edges between windows

and walls, the results of BiFuse++ are closer to the ground truth. In contrast, the other

baselines generate smooth results in these areas. Hence, our BiFuse++ is able to predict

accurate point clouds and outperform the other baselines.

2.4.4 Computational Comparison

Before we apply BiFuse++ to self-training of depth estimation, we first examine the

efficiency of different fusion approaches since the self-training procedure usually takes

more resources and, thus, a memory-efficient framework is necessary. We estimate the

efficiency with the following two aspects.
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Number of Parameters. Since the number of parameters used by fusion modules ( [1],

[43], and BiFuse++) depends on the channels of input features, we fix the channel numbers

of all approaches to 512 to fairly compare the module size of different fusion modules. As

shown in Table 2.6, the fusion module of BiFuse takes the largest number of parameters,

and BiFuse++ uses the smallest one. Under this setting, our new fusion module can reduce

55% of parameters than BiFuse does.

Table 2.6: The number of parameters of different fusion modules (we set the channels to
512).

BiFuse++ UniFuse BiFuse

Parameters 2.1 M 3.5 M 4.7 M

Table 2.7: The computational comparison of fusion approaches.

Approach GFLOPs Model size Runtime Memory

BiFuse++ 87.42 53.19 M 1762 Mb
UniFuse 62.58 30.26 M 2006 Mb
BiFuse 682.86 253.1 M 3346 Mb

Table 2.8: The quantitative results on PanoSUNCG [5] under the self-supervised scenario.
Our BiFuse++ with Spherical Photometric Loss (SPL) [5] or Contrast-Aware Photometric
Loss (CAPL) outperforms other baselines. SSIM stands for structural similarity.

Method MAE ↓ MRE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑
360-SelfNet (Equi) 0.2436 0.1499 0.5421 0.0959 0.8618 0.9463 0.9714

360-SelfNet 0.2344 0.1521 0.5121 0.0934 0.8479 0.9420 0.9726
UniFuse 0.2452 0.1458 0.4978 0.0920 0.8513 0.9398 0.9691

BiFuse++ w/ SSIM 0.3125 0.1852 0.5889 0.1068 0.7847 0.9313 0.9684
BiFuse++ w/ SPL 0.2083 0.1287 0.4695 0.0838 0.8838 0.9583 0.9778
BiFuse++ w/ CAPL 0.1815 0.1176 0.4321 0.0790 0.8974 0.9546 0.9773

Runtime Resources. To examine the computational resources of different fusion ap-

proaches, we adopt RTX2080Ti as the platform and use a single dummy image of resolu-

tion 512x1024x3 as the input of all tested frameworks. The results are shown in Table 2.7.

Compared to BiFuse, we reduce 87% of GFLOPs and 79% of parameters. Moreover, Bi-

Fuse++ only needs half of the inference memory as BiFuse. Although our GFLOPs and
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parameters are slightly larger than UniFuse, we use less inference memory since we adopt

PixelShuffle [67] in the decoding process. In general, we significantly reduce the compu-

tational resources of BiFuse and make it more practical to be applied in self-training.

EQUI 360-SelfNet UniFuse BiFuse++ GT

Figure 2.9: The qualitative results on PanoSUNCG under self-supervised scenario.

2.4.5 Results of Self-Supervised Scenario

Weuse the framework described in Section 2.3.2 to self-supervisedly train our Depth-

Net and PoseNet. For the qualitative and quantitative comparison, we conduct experi-

ments on PanoSUNCG [5] to verify the applicability of BiFuse++. We compare BiFuse+

+ with three baselines: 1) 360-SelfNet (Equi): the framework of [5], but the inputs are

equirectangular panoramas. 2) 360-SelfNet: the framework proposed in [5]. 3) UniFuse:

replace our DepthNet with the architecture of [43]. In addition, we compare variants of

BiFuse++ with three different loss functions: 1) “BiFuse++ w/ SSIM”: our framework

trained with structural similarity index (SSIM). 2) “BiFuse++ w/ SPL”: our framework

trained with spherical photometric loss proposed by [5]. 3) “BiFuse++ w/ CAPL”: our

framework trained with our proposed Contrast-Aware Photometric Loss. The quantitative
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and qualitative results are shown in Table 2.8 and Figure 2.9, respectively.

Compared with our previous work 360-SelfNet [5], our framework “BiFuse++ w/

CAPL” quantitatively improves 360-SelfNet by 16% inRMSE and 23% inMAE, as shown

in Table 2.8. Compared to UniFuse, we improved 13% in RMSE and 26% in MAE. Since

the architecture of 360-SelfNet only adopts cubemap projection as input, the benefit of

equirectangular projection is discarded, and thus 360-SelfNet introduces much noise to

predicted depthmaps, as shown in Figure 2.9. AlthoughUniFuse can predict sharper depth

maps than 360-SelfNet does, there are still obvious errors around object/wall boundaries.

In contrast, BiFuse++ is capable of recovering more details of objects and has smaller er-

rors around the object boundaries. Such an improvement comes from our fusion approach.

During the encoding process, we pass the fused feature maps (f ′
equi and f ′

cube in Figure 2.4)

to layers of encoders to preserve more details, and thus BiFuse++ achieves sharper depth

predictions in the end.

Compared to the training results without CAPL (BiFuse++ w/ SPL), “BiFuse++ w/

CAPL” improves the RMSE andMAE by 8% and 13%, respectively (see Table 2.8). Such

an improvement validates the reason why we design CAPL to prevent the network from

focusing on low texture areas, i.e., to balance the difference between high-texture and

low-texture areas. Comparing to training with SSIM loss (BiFuse++ w/ SSIM), the final

performance is worse than training with spherical photometric loss. We have tried to apply

other structure-based loss functions like weighted local contrast normalization (WLCN)

proposed by [69], but the training fails to converge, and no reasonable related depth maps

can be generated. Both SSIM and WLCN loss functions apply normalization to image

patches, and we find such an operation eventually harms the training stability. In contrast,

our Contrast-Aware Photometric Loss uses the standard deviation of image patches as the
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EQUI BiFuse++ w/ SPL BiFuse++ w/ CAPL

Figure 2.10: The effect of Contrast-Aware Photometric Loss (CAPL). The Spherical Pho-
tometric Loss (SPL) cannot deal with the low-texture area and thus produces unstable
depth maps (red indicates a large depth value). Note that we mask out the photographer
at the bottom left and right region.

weighting of photometric loss instead of directly applying normalization, and thus we can

prevent numerical instability.

Training on real-world videos. To train BiFuse++ in real-world scenarios, we use

the dataset we collected in 360-SelfNet [5], in which there are 25 video sequences of

5 rooms recorded with RICOH THETA V, to apply the self-training strategy adopted in

Section 2.4.5 for experiments. To ensure the training stability and the small baseline be-

tween consecutive frames, we extract the raw videos with 5 frames per second. Since we

do not have laser scanners like LiDARs to collect the depth ground truths, we show the

training results qualitatively. As addressed in Section 2.3.2, directly applying spherical

photometric loss [5] to the real-world videos results in unstable depth prediction under
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EQUI BiFuse++ w/ SPL BiFuse++ w/ CAPL

SPL=0.44 SPL=0.49

Figure 2.11: The Spherical Photometric Loss (SPL) is a degenerated loss. The BiFuse+
+ w/ SPL indeed reaches a lower SPL (0.44) compared to BiFuse++ w/ CAPL (0.49).
However, the quality of BiFuse++ w/ SPL is worse than BiFuse++ w/ CAPL.

low-texture areas such as walls or floor, since the corresponding photometric loss is am-

biguous, i.e., there is a degeneration problem in the spherical photometric loss. Thus, we

propose CAPL to prevent the network from focusing on these areas overly and we com-

pare the training results before/after applying CAPL in Figure 2.10. Without CAPL, the

depth maps are noisy, especially on the wall and floor, while the results are smooth and

stable after applying CAPL. Hence, our proposed BiFuse++ along with CAPL is a gen-

eral self-supervised 360◦ depth estimation framework capable of estimating high-quality

depth maps in both virtual and real-world environments.

Spherical Photometric Loss Degeneration. To investigate the reason why our CAPL

can improve the results on real-world videos, we monitor the spherical photometric loss

(SPL) value of “BiFuse++ w/ SPL” and “BiFuse++ w/ CAPL”. For BiFuse++ w/ SPL,

the average spherical photometric loss value over the validation set is 0.45, while the

average loss value becomes 0.48 after applying CAPL. This indicates that the networkwith

a lower average spherical photometric loss cannot always produce better depth maps. As

the example shown in Figure 2.11, the depth map with higher spherical photometric loss

is better than the lower one. When there is no constraint on low-texture areas (w/ SPL),
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we find that the networks still tend to keep minimizing the spherical photometric error on

these areas even if the corresponding value is already small. Since there is small intensity

noise introduced by camera sensors between videos frames, the spherical photometric loss

is impossible to be zero when the perfect depth prediction and camera motion are given.

The minimizing behavior of networks in low-texture areas severely harms the training

stability. Thus, our CAPL uses the standard deviation of neighboring pixels to directly

enforce our networks not to overly focus on these areas because the standard deviation of

low-texture areas is always small.

2.5 Conclusion

We propose “BiFuse++”, the first bi-projection architecture for both self-supervised

and supervised 360◦ depth estimation, extending our previous works 360-SelfNet [5] and

BiFuse [1]. To improve the efficiency and scalability, we propose a new fusion module

that adopts a residual connection and removes the mask module from the original fusion

module. In addition, we follow [43] that removes a redundant decoder and adopts a pix-

elshffule upsampling strategy to improve efficiency. We conduct experiments on three

benchmark datasets of 360◦ depth estimation and achieve state-of-the-art performance in

self-supervised scenarios and comparable performance with state-of-the-art approaches in

supervised scenarios.
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Chapter 3 BiFuse++ and LED2-Net

Based on previous works [1,2], the bi-projection fusion scheme is proven to be help-

ful in 360◦ depth estimation. In BiFuse [1], we apply such a fusion to supervised training

scenario. While in BiFuse++ [2], the fusion approach are used in both supervised and

self-supervised training scenarios. However, applying bi-projection fusion in 360◦ layout

estimation has not been widely studied yet. In this chapter, we utilize BiFuse++ archi-

tecture into my previous paper LED2-Net to show that 360◦ layout estimation can also

benefit from our bi-projection fusion approaches.

3.1 Introduction

Monocular 360◦ layout estimation is an important technique in VR/AR applications.

Given a room layout, the provided geometric cues can also help indoor autonomous sys-

tems to efficiently make decisions. An illustration of 360◦ layout estimation is shown

in Figure 3.1. Given a single panorama which camera rotation is aligned with gravity, a

deep neural network is trained to estimate the corner positions from it, and then the corner

positions are projected to 3D coordinate and the 3D room layout is recovered.

To train the networks, previous works such as HorizonNet [65] directly regress the

boundary positions along the horizontal axis in the panoramas. As shown in Figure 3.2,
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Figure 3.1: The task for layout estimation [3]. Given a single panorama, we train a neural
network that takes the panorama as input and infers the corresponding 3D structure.

Figure 3.2: The motivations of LED2-Net [3]. The corners of a room layout are shown
in the left figure. When we introduce same errors to these corners, the IoU difference
introduced from these corner errors can be hugely different (right figure).

such a direct regression does not consider the fact that each corner has different contribu-

tions for the final layout, and thus leads to a sub-optimal training performance. To solve

this issue, my previous paper LED2-Net takes the geometric relation of corners into ac-

count. Specifically, LED2-Net propose a layout-to-depth transformation which is able to

convert the predicted layout boundary points into a single horizon depth (Figure 3.3) map

in a differentiable scheme. Then, the loss is calculated according to the ground truth depth

maps from layout annotations. Based on the proposed differentiable depth rendering pro-

cess in LED2-Net, the importance of each corner can be well considered in the final loss

function.
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Figure 3.3: The horizon depth of LED2-Net [3]. LED2-Net proposes a layout-to-depth
module to convert predicted and ground truth layout to their corresponding horizon depth
maps.

To explore the applicability of bi-projection fusion in 360◦ layout estimation, we

adopt the bi-projection architecture of BiFuse++ [2] and use the loss function of LED2-

Net [3] to train the network. We conduct experiments on Realtor360 [7] and Matter-

port3D [8] datasets. We found that our new framework can perform better than LED2-Net,

while reducing about 20% of network parameters (from 82M to 65M).

3.2 Experiments

We verify this architecture on both Realtor360 [7] andMatterport3D [8] datasets. We

first introduce the two datasets and then show our experimental results in Section 3.2.1

Realtor360. This dataset is annotated by Yang et al. [7], which consists of 593 panora-

mas from Sun360 [70] dataset and 1980 panoramas collected from a private database. For

our experiments, we follow [3] to use the official train and val splits.

Matterport3D. Zou et al. [71] and Wang et al. [72] manually annotate the ground truth

layout from the original Matterport3D [8] dataset. In total, the dataset provides 2295

panoramas along with their layout annotations. We follow the official train/val/test splits
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Table 3.1: The quantitative results of Realtor360 [7].

Method
Overall 4 corners 6 corenrs 8 corners 10+ corners

2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%)
LayoutNet [29] 65.84 62.77 80.41 76.60 60.50 57.87 41.16 41.16 22.35 22.35
DuLa-Net [7] 80.53 77.20 82.63 78.91 80.72 77.79 78.12 74.86 63.10 59.72

HorizonNet [65] 86.69 83.66 87.83 84.73 87.63 84.78 81.27 78.44 78.49 73.64
AtlantaNet [73] 80.36 74.59 83.42 77.05 80.67 75.01 73.72 69.31 59.43 55.51
LED2-Net [3] 88.19 85.21 89.25 86.33 88.8 85.97 83.7 80.81 81.67 76.2

Ours 88.81 85.93 90.00 86.96 89.43 86.84 84.01 81.24 81.78 77.11

Table 3.2: The quantitative results of Matterport3D [8].

Method
Overall 4 corners 6 corenrs 8 corners 10+ corners

2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%)
LayoutNet [29] 78.73 75.82 84.61 81.35 75.02 72.33 69.79 67.45 65.14 63.00
DuLa-Net [7] 78.82 75.05 81.12 77.02 82.69 78.79 74.00 71.03 66.12 63.27

HorizonNet [65] 81.24 78.73 83.54 80.81 82.91 80.61 76.26 74.10 72.47 70.30
AtlantaNet [73] 82.09 80.02 84.42 82.09 83.85 82.08 76.97 75.19 73.19 71.62
LED2-Net [3] 83.91 81.52 86.91 84.22 85.53 83.22 78.72 76.89 71.79 70.09

Ours 83.43 81.12 86.35 83.69 84.31 82.17 77.86 76.31 71.20 69.67

for conducting experiments.

3.2.1 Experimental Results

The quantitative results on Realtor360 [7] and Matterport3D [8] are shown in Ta-

ble 3.1 and Table 3.2, respectively. For Matterport3D, our results are slightly worse than

with our previous work LED2-Net [3]. For Realtor360, our BiFuse++ architecture can

improve the 2D IoU from 88.19 to 88.81, while reducing the number of parameters from

82M to 65M. Such a improvement is primarily from our bi-projection module since the

original LED2-Net and HorizonNet [65] only use a single ResNet-50 [13] as the encoders

which take an equirectangular image as input without any information sharing between

different projections. In comparison, our BiFuse++ adopt two ResNet-34 encoders to ex-

tract the features from different projections and use several bi-projection fusion modules

to share their information, which improves the layout performance and reduce the total

number of parameters.
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Chapter 4 Conclusions

In this dissertation, I propose a bi-projection architecture BiFuse [1] which adopts a

dual-branch framework utilizing both equirectangular and cubemap projections formonoc-

ular 360◦ depth estimation. BiFuse achieved the state-of-the-art depth accuracy in 2019.

However, to reduce the model complexity and further improve the performance, I pro-

pose an more advanced framework BiFuse++ [2] which reduced about 55% of the model

size compared to BiFuse. In addition, I verified this framework in both supervised and

self-supervised training scenarios. For supervised scenario, the performance is compa-

rable to HoHoNet [44], while the performance achieved state-of-the-art performance in

self-supervised scenario. To further demonstrate the potentials of the bi-projection archi-

tecture, I extend BiFuse++ backbone to my previous paper LED2-Net which focuses on

360◦ layout estimation, and achieved a slightly better performance on Realtor360 [7] and

a comparable result on Matterport3D [8].
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